Renew, Retire, Replace

How the mask equipment industry can transform its products and become healthy again

F. Kalk | Toppan Photomasks, Inc.

Problem statement

- The market for semiconductor chips is expanding rapidly as electronic devices and appliances become more pervasive in our lives.
- This expansion involves...
 - 300mm and 200mm fabs.

- high-end (40 \rightarrow 7nm) and mature (180 \rightarrow 65nm) technologies.

Year	200mm Wafer Fabs
1995	70
2007	200
2016	188
2021	202
	Source: SEMI

The semiconductor industry is structured to respond to 300mm (high-end) demand and is unprepared to cope with the 200mm (mature) resurgence.

September 2018 eBeam Initiative

What this talk is about

- Over the past couple decades, the IC mask industry has...
 - Served the high end market with mostly captive and some merchant mfg.
 - Served the low end (standard / mature) market with merchant mfg.
- Mask equipment suppliers "chase" the high end and "retire" mature tools.
- So how should the mask industry respond to the legacy resurgence?

This talk will:

- Forecast the 2022 IC mask market and segment it by writing tool.
- Show how the mask writer toolkit must change to serve the market.

• Forecast the 2022 IC mask market and segment it by writing tool

• Show how the mask writer toolkit must change to serve the market

Methodology

- What we already know:
 - Mask set build strategy (i.e., what tools are used to build any mask set).
 - 2017 tapeout volume, segmented by market and technology.
 - 2017 mask consumption, where:

[mask consumption] = [tapeout volume] x [masks per tapeout]

- Build a 2022 mask consumption model:
 - Using semiconductor market growth predictions, make (highly) educated guesses about tapeout / mask market growth.
 - From this, forecast the required 2022 toolkit.

Rather than showing data for the entire mask mfg toolkit, the focus here will be on mask writers, especially e-beams.

Methodology illustrated

Logic set writing toolbase

Tape-out forecast by product category

Subject each blue bar to the p. 6 analysis to get 2017 mask production by writing tool.

Apply the p.6 analysis to the green bars to get 2022 mask production by writing tool.

Worldwide mask demand

Mask writer toolbase demand

"Svc" and "Parts" denote availability from OEMs.

Technology	w	rite	PEB/Develop		CD Metrology		Strip/Clean		Inspection		Repair		AIMS (TM)		Phase/Trans Metrology			
	Svc	Parts	Svc	Parts	S∨c	Parts	S∨c	Parts	S∨c	Parts	Svc	Parts	S∨c	Parts	S∨c	Parts	Svc	Parts
=20nm</th <th colspan="2">Ad∨e-b</th> <th colspan="2"></th> <th colspan="2">CD SEM</th> <th colspan="2">Dry</th> <th colspan="2"></th> <th colspan="2">Ad∨ DUV</th> <th colspan="2">e-b</th> <th colspan="2"></th> <th colspan="2"></th>	Ad∨e-b				CD SEM		Dry				Ad∨ DUV		e-b					
40/28nm	Std e-b			CD SEN		SEM	Dry				Std DUV		e-b			-		-
90/65nm	Mature e-b				CD SEM		Dry				Ad∨UV		FIB/e-b					
180/130nm	Std laser				Optical Dry		ry			UV		FIB						
>/=250nm	Mature laser				Opt	Optical Wet		/et			Visible		Laser					
										-	-							

Mask manufacturing toolkit health prognosis for 2020

The 2022 demand statement is inconsistent with the mask toolkit's health. Only advanced tools are being built.

Moreover, older tools (e.g., low-end e-b), will be de-supported in the next 5 yrs.

• Forecast the 2022 IC mask market and segment it by writing tool

• Show how the mask writer toolkit must change to serve the market

TOPPAN

Mask writer landscape with mature e-b retirement

• **Strategy** for mask toolkit modernization:

1 Narrow the number of supported platforms; redesign / modernize them.

2 Provide modernization upgrades for existing supported tools.

③Gradually retire unsupportable tools and replace them with modern ones.

This strategy can be applied to most of the mask manufacturing toolkit.

- **Example**: retirement of low-end e-b writers.
 - Two year time horizon:
 - Redesign laser and mid-range e-b writer datapaths with modern, replaceable, scalable, generic data systems.
 - Provide data path upgrade package for existing mid-range e-b tools.
 - Five year time horizon:
 - Retire low-end e-beams over several years (say, five).
 - Fill the low-end gap with modern laser and mid-range e-b writers.

- Input assumptions:
 - Many mature e-b tools are "retired" by 2022 (let's say 67% of them).
 - The retired tools' work is moved to other tools.
 - 75% moves to mid-range e-b tools.
 - Mid-range e-b writes 1.5x as fast as mature e-b.
 - 25% moves to advanced laser tools.
 - Advanced laser writes 2x as fast as mature e-b.
 - Market growth is either...
 - As predicted earlier in this talk, or...
 - Zero.
- Output: additional tool demand by platform.

Tool suppliers' modernization challenge

Build mid-range e-beam writers at a cost consistent with today's mask prices

tolerate 2005 e-beam prices.

Writer summary

- Advanced e-beam writers: healthy.
 - ~100 are required over the next 5 years.
 - Demand can be met by existing VSB and MBMW mfg capacity.
- Standard/mature e-beam writers: already described.
 - Renew standard / retire and replace mature.
 - Standard market will expand.
- Advanced laser writers: healthy.
 - Healthy mfg infrastructure with modernization strategy.
 - Capacity can meet the demand.
- Standard/mature laser writers: similar to std/mature e-b.
 - Renew standard / retire and replace mature.
 - Standard market will expand.

Summary

- Explosive market growth in low-end electronics has created a manufacturing gap in a semiconductor industry geared toward chasing the high end.
- The IC mask industry faces a 70+ tool gap in low-to-mid-range manufacturing capacity as the mature toolkit is retired over the next 5 years.
- The gap can be closed by gradually retiring mature platforms and modernizing select existing platforms to replace them.
- This extension strategy is applicable to the entire mask toolkit.