The Impact of Context-Dependent Mask-Effects on Mask Hotspots

Below 50nm, Context is Critical

- Vary L:S = 13nm to 300nm using 30nm and 15nm blurs
- Will compare the differences of line 1 and line 10, as well as line end shortening

- Above 50nm, contextindependent rules-based processing works well enough
- Below 50nm, context is critical
- If we can't push below 40nm, we leave the benefits of Moore's Law on the table
- Simulation-Based Mask Processing is the inevitable answer

Below 50nm, Context is Critical

Below 50nm, Context is Critical For Line-End Shortening, Too

Each picture is scaled up to show the contour

Slower Resist: Less CD Variation

30nm blur

15nm blur

40nm

100nm

15nm blur

30nm blur

10

50nm

15nm blur

70nm

300nm

1000 epoch Monte Carlo of threshold variation

Each picture is scaled up to show the contour

Dose Up for Better Contrast

15nm beam blur

Use Simulation to Dose Up for Better Contrast

A Choice Between Two Evils?

Simulation is the future of MDP

- Dose-modulation based correction provides the best solutions
- Context-dependent correction is needed regardless of writing method

