LithoVision 2012

Computational Lithography Requirements & Challenges for Mask Making

Naoya Hayashi, Dai Nippon Printing Co., Ltd

Contents

- Introduction
 - Lithography Trends
- Computational lithography options
 - More Complex OPC SMO, ILT
- Mask challenges
 - Mask fabrication Shot count

LithoVision 2012

- Inspection and metrology
- Summary

OPC: optical proximity correction SMO: source mask optimization ILT: inverse lithography technology

ITRS Lithography Solutions ~ DRAM/MPU

ITRS 2011 edition

ITRS Lithography Solutions ~ Flash

ITRS 2011 edition

Optical lithography extension is expected

Contents

- Introduction
 - Lithography Trends
- Computational lithography options
 - More Complex OPC SMO, ILT
- Mask challenges
 - Mask fabrication Shot count

- Inspection and metrology
- Summary

Strong OPC, Source & Mask Optimization

Computational Lithography solutions such as SMO will be needed

Evaluation of DOF improvements with SMO

DOF margin was improved by SMO

LithoVision 2012

SO: source optimization, CP: cross pole

Details of SMO Evaluation

Motif patterns vs. Optimized source shapes (Metal Layer)
* Collaborative evaluation with AIST Japan

Evaluation of optimized source shapes based on various target patterns.

LithoVision 2012

* Motif patterns are from sparse to dense.

Details of SMO Evaluation

➤ Motif patterns vs. Optimized source shapes(Metal Layer) ~

* Collaborative evaluation with AIST Japan

Evaluation of optimized source shapes based on various target patterns.

Learn the balance of optimized source shape across the pattern layout?

LithoVision 2012

Even within a layer, optimized source shape varies greatly

Details of SMO Evaluation

➤ Motif patterns vs. Optimized source shapes (Metal Layer) ~

* Collaborative evaluation with AIST Japan

LithoVision 2012

Optimized source shape can be obtained with wider reference points

Contents

- Introduction
 - Lithography Trends
- Computational lithography options
 - More Complex OPC SMO, ILT
- Mask challenges
 - Mask fabrication Shot count

- Inspection and metrology
- Summary

EB Data Grid Size vs. Lithography Margin

* Collaboration work with Nikon

LithoVision 2012

Optimum data grid balancing litho margin and mask complexity

< 1/10 of EB shots with optimum grid size

Shot Count Reduction Approaches

Shot Count Reduction Approaches

conventional fracturing

simplifying assist features

MB-MDP overlapped shots with circular shape

LithoVision 2012

Fewer shots will be obtained by dedicated shot shapes

Trials & Examples

Courtesy of

LithoVision 2012

Overlapped fracturing reduces the shot counts with optimal effect

Mask Defect Inspection Tools

Tool	KLA597XR	Teron617	NPI-6000
Vendor	KLA-Tencor	KLA-Tencor	NuFlare
Technology node (nm)	45-32 nm	32-22 nm	45-22 nm
Wavelength (nm)	257	193	198.5
Pixel size (nm)	72 / 90 / 125	55 / 72	50 / 70 / 92
Performance Min. sense. (nm)	36	30	30

Advanced inspection systems must be adopted

Printability Metrology Tool ~ AIMS32

ΤοοΙ	AIMS45	AIMS32
Vendor	Carl Zeiss	Carl Zeiss
Technology node (nm)	90-32 nm	90-22 nm
Wavelength (nm)	193	193
Illumination numbers	24	100
Measurement repeat. (3 σ , nm@wafer)	2	0.5
Stage accuracy (nm)	< 2000	< 150
TAT (stack/hrs)	40	120
Wafer level CD application	No	Yes
SMO application	No	Yes

Advanced printability evaluation tool will be needed

Summary

- ArF lithography will be extended with computational lithography technologies
- Further optimization of SMO may be needed
- Mask data is becoming more complex and intensive
- Successful trials are underway using overlapped shots with MB-MDP
- Mask defect inspection and printability metrology tools for computational lithography mask have been evaluated
- More close collaboration needed for future work among mask suppliers, mask users, and related tool suppliers

Acknowledgement

- Nikon for collaboration work on SMO evaluation
- D2S for overlapped shot trial
- K. Kadota of AIST for SMO evaluation, and the part of work was supported by NEDO
- E. Tsujimoto, and K. Hayano of DNP for providing evaluation data, and N. Toyama of DNP for shot reduction approach

