DFEB Methodology Guidelines for Physical Design Engineers

Revision 2.1 November 9, 2009
Content

- Design for E-Beam: What and Why
- Shot Count Analysis
- Synthesis Best Practices for DFEB
- Place & Route Best Practices for DFEB

Access to this presentation does not grant any license to US patent 7,579,606 and any other patents or intellectual property rights held or pending by D2S, Inc.
Design for E-Beam (DFEB): What and Why
DFEB vs. Mask Manufacturing Process

Design Data

E-Beam Direct Write (EbDW)

DFEB overlay library and Stencil Mask

Mask (Reticle)

Mask Manufacturing Test & Repair

Stepper

Wafers
Mask Cost is Top Concern

<table>
<thead>
<tr>
<th>Concern</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>9%</td>
</tr>
<tr>
<td>Test costs</td>
<td>0%</td>
</tr>
<tr>
<td>Packaging costs</td>
<td>2%</td>
</tr>
<tr>
<td>Semiconductor IP quality</td>
<td>6%</td>
</tr>
<tr>
<td>Semiconductor IP cost and...</td>
<td>13%</td>
</tr>
<tr>
<td>Inadequate EDA tools for...</td>
<td>10%</td>
</tr>
<tr>
<td>Increased design complexity</td>
<td>26%</td>
</tr>
<tr>
<td>Higher-mask costs</td>
<td>34%</td>
</tr>
</tbody>
</table>

Source: Global Semiconductor Association (GSA) member survey, December 2007
Enabling the Long Tail of SoCs

Source: Chris Anderson’s “The long tail: Why the future of business is selling less of more”
The Tail is Getting Shorter

We can enable the Tail with DFEB
⇒ More designs
⇒ Faster time to market

Cost of Manufacturing Chips per Design

32-nm with mask
40-nm with mask
65-nm with mask

Maskless SoC

Big opportunity

Revenue per Design

Non-addressable Market

of Designs
DFEB Uses Character Projection

Variable Shape Beam (VSB) (4 shots)

Electron Gun

1st Aperture

2nd Aperture

Demagnification

Character Projection (CP) (1 shot)

Diagram courtesy Hitachi High-Technologies
DFEB Overview

- RTL
 - SP&R
 - GDSII
 - 193i Data Prep
 - Mask Making
 - No DFEB 3-5X VSB
 - E-Beam Data Prep
 - EbDW Format
 - DFEB Overlay Library
 - DFEB SP&R
 - GDSII
 - E-Beam Data Prep
 - EbDW Format
 - CoDesign
 - Stencil Mask
 - E-Beam Data Prep
 - EbDW Format

w/ DFEB 10-25X VSB
DFEB Increases Throughput by Decreasing Shots

DFEB achieves a 10-25X reduction by:
1. Co-designing the cell library and the stencil mask
2. Optimizing the physical design for CP

Comparison Source: D2S, Inc. Computer simulation of e-beam write time on a particular test case (speed up is dependent on aperture size and utilization %)
DFEB Designs Are Compatible With Mask-based Volume Productions
Shot Count Analysis
Terminology Clarification

• “Generic” flow/steps: Refers to the flow you are already using

• “DFEB” flow/steps: Additional steps or data needed to augment the generic flow for DFEB
Why Shot Count Is So Important

• Generic flow optimizes for area, timing, yield and power

• In DFEB flow, also optimize for shot count
 • Goal is defined at the beginning of the design

• Run shot count analysis at multiple points in the flow
 • Design flow checkpoint
 • Monitor and evaluate the cost of design trade-offs

• Shot count reports are refined in each step throughout the flow
Pre-RTL Shot Count Analysis Worksheet

Excel spreadsheet already prepared and available for use for shot count analysis

Parameter entries are based on Design Specification

Shot Count Analysis report output includes shot count for VSB, CP+VSB, and provides the range of shot count reduction ratios. Use this as the shot count goal.

Pre-RTL Shot Count Estimation

- **D2S DFEB Library:** 45nm Low Power
- **Design Name:** DFEB test chip
- **Taget Area (mm²):** 64.2

Estimated Gate Count

- **Estimated Gate Count:** 24,000,000
- **Estimated FlipFlop in Design (%):** 10.80%
- **Estimated Combo Gates in Design (%):** 89.10%
- **Estimated Non-DFEB Gates in Design (%):** 0.10%

Total Single port RAM

- **Total Single port RAM bits:** 5,000,000
- **Number of 1-port RAM:** 60
- **Total 2-ports RAM bits:** 10,000,000
- **Number of 2-port RAM:** 6

Total Number of Custom Circuit (IP)

- **Total Number of Custom Circuit (IP):** 1
- **Estimated Total Area of Custom Circuits (um²):** 240000

Total number of Port (pins)

- **Total number of Port (pins):** 794

Estimated Shot Count Report

<table>
<thead>
<tr>
<th>Estimated Area & Utilization</th>
<th>Estimated VSB (OD-M1)</th>
<th>Estimated CP + VSB (OD-M1)</th>
<th>Estimated Shot Count Reduction Ratio (OD-M1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated core area (mm²)</td>
<td>58.5943</td>
<td>58.5943</td>
<td></td>
</tr>
<tr>
<td>Estimated standard cells area (mm²)</td>
<td>15.6000</td>
<td>16.2000</td>
<td></td>
</tr>
<tr>
<td>Estimated hard macros area (mm²)</td>
<td>28.3650</td>
<td>30.1150</td>
<td></td>
</tr>
<tr>
<td>Estimated pads area (mm²)</td>
<td>5.6057</td>
<td>5.6057</td>
<td></td>
</tr>
<tr>
<td>Estimated Total core utilization (s+m)/core area</td>
<td>79.04%</td>
<td>79.04%</td>
<td></td>
</tr>
<tr>
<td>Estimated Total cells utilization ((s+m+p)/chip area)</td>
<td>80.87%</td>
<td>80.87%</td>
<td></td>
</tr>
<tr>
<td>Estimated Total utilization ((s+m+p+fillers)/chip area)</td>
<td>100.00%</td>
<td>100.00%</td>
<td></td>
</tr>
</tbody>
</table>

Estimated Range

- **Estimated VSB (OD-M1):** 1,296,766,129 - 1,082,320,866
- **Estimated CP + VSB (OD-M1):** 117,567,192 - 58,377,609
- **Estimated Shot Count Reduction Ratio (OD-M1):** 11.03 - 18.54
Shot Count Report Example

<table>
<thead>
<tr>
<th>Model</th>
<th>Count</th>
<th>CP Shot</th>
<th>Total VSB Shots</th>
<th>Total DFEB Shots</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAI22X6_D2S</td>
<td>6533</td>
<td>4</td>
<td>326650</td>
<td>26132</td>
</tr>
<tr>
<td>IVX1_D2S</td>
<td>20137</td>
<td>4</td>
<td>583973</td>
<td>80548</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDFFRP_D2S</td>
<td>17461</td>
<td>8</td>
<td>5011307</td>
<td>139688</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>320793</td>
<td></td>
<td>27138554</td>
<td>1681143</td>
</tr>
</tbody>
</table>

Reduction Reports

Shots Count Reduction Ratio (Cells): 16.14
Synthesis Best Practices for DFEB
Generic Synthesis Flow

Generic RTL synthesis steps

1. **Start**
2. **Env. Setup & Target Libraries**
3. **Read RTL**
4. **Elaborate**
5. **Design Constraint**
6. **Optimization/ Mapping**
7. **Timing Analysis**
8. **Meet Spec?**
 - **No**
 - **Yes**
9. **Release to P&R**
10. **Done**
DFEB includes additional steps for shot count optimization and analysis.
What Is NOT Changed

• No change to RTL
• No change to SDC constraint files
 • Same ECO refinement process used to get design to meet the Area, Timing, and Power.
• No change to timing analysis scripts or commands
DFEB Synthesis Steps
Environment & Library Setup

• Add DFEB overlay library to the target generic libraries

Otherwise the same as the generic synthesis tools setup
Import RTL Netlist and Elaborate

- Perform generic procedure to read in the RTL
- Elaborate the design
- Perform generic procedure to read in SDC constraints
Shot Count Optimization

• Prior to optimization and mapping, run shot count optimization setup script to set additional constraints to prefer DFEB overlay library cells

• Run generic optimization/mapping command to perform timing, area, and power optimization
Shot Count Analysis

- After optimization, run shot count analysis to:
 - Reset the cell attributes so that other reports are accurate
 - Generate a shot count report
- Compare the shot count reported to the shot count goal
 - Shot count analysis is based on cell count without taking wire routing, filler cells, and well taps in consideration
- Then run timing analysis and other reports
Synthesis ECO

• Perform ECO to fix critical timing, area, or power issues with these in mind:
 • Based on DFEB constraints, virtually all cells will be DFEB overlay library cells
 • Where necessary, fix critical timing paths using non-DFEB (generic) cells with better performance at the cost of increased shot count
Release to Place & Route

• Release to place & route when timing, area, power and shot count goals are met

• Generate SDC for P&R tools as you would in generic flow
Place & Route
Best Practices for DFEB
Generic Place & Route Flow

1. Env. & Physical Libraries Setup
2. Read Netlist & SDC
3. Floorplanning
4. Cell Placement
5. Clock Tree Synthesis
6. Detailed Routing
7. Timing Analysis

Meet Spec?
- No
- Yes

GDSII for tapeout

Done
DFEB Place & Route Flow

DFEB includes additional steps for shot count optimization and analysis.
DFEB Overlay Library Preparation

- Purpose: minimize shot count
- Set the following attributes in the DFEB overlay library to make them the default for the tools:
 - Orientation preference
 - Pin access and connection preference
 - Metal1 routing preference
- Can always override attributes if needed (to meet other constraints)
Orientation Preference

- North or Flip-South orientation is preferred for standard cells
 - North (R0)
 - Flip-South (MX)

- North or Flip-South orientation is preferred for RAM/ROM macros
 - North (R0)
 - Flip-South (MX)

Shot count Warning:
Standard cells and RAM/ROM macros that do not follow the predefined orientations will be shot with VSB instead of CP, increasing shot count.
Floorplanning Examples

- RAMs with non-preferred orientation will be shot with VSB, and therefore increase the shot count.
- Trade off is between congestion and shot count.

Recommended:
Use non-preferred orientation only when needed to relieve routing congestion.
Pin Access and Via Drop Preferences

- Refer to the P&R tools documentation for routing options to drop vias inside the standard cell pins

- Preferred
 - Enclosed via geometries completely inside standard cell pins

- Not Preferred (Extra VSB shots)
 - Enclosed via geometries extended outside the standard cell pins
Metal1 Routing Preferences

- Metal1 stub routes will increase shot count

Shot count Warning:
Avoid Metal1 Stub Routing (Use tools option to turn off these types of routing)
A Bit of Background

- Electrons in an e-beam repel each other.
- As an e-beam becomes larger, printed image gets more blurred (see picture on right).
- Using close to maximum allowed e-beam size is important for less shot count.

Source: Maruyama, et.al., EIPBN 2009
Power Routing Has High Impact on Shot Count

- Power routing is a very large area
- The Coulomb effect dictates the maximum area per shot
- CP can write wires longer than 2µm more accurately than VSB
 - Due to possible misalignment of first and second apertures for VSB
 - CP relies on the shape of the stencil alone

![Diagram showing misalignment impact](image-url)
Power Grid Planning Using Wide Metals

- Choose a unit width, and use whole multiples of this width
- Fewer, wider power stripes result in lower shot count

Extended area is shot using VSB

14 CP shots (Preferred)

14 CP shots + VSB shots (Avoid)
Example of Power Grid Planning

- Wide metals have widths of 2µm and 3µm (whole multiples of 1µm)
Cell Placement

- Perform generic cell placement step
- Shot count analysis after this step produces shot count report excluding shot count used for routing layers.
Clock Tree Synthesis (CTS)

- Specify buffers, inverters, and delay cells from the DFEB overlay library
- Perform CTS using the above DFEB cells
- Shot count analysis will now include the clock tree cells
Detail Routing and Timing Closure

- Perform generic detailed routing step for timing closure
 - No M1 for routing
 - Via1 placed within a pin
 - For compatibility to photo-mask manufacturing, plan to do DFM design also
- Shot count analysis will now include the detail routing
Shot count reports are refined in each step

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-RTL shot count analysis</td>
<td>Excel spreadsheet-based analysis. Parameter entries are based on design specification.</td>
</tr>
<tr>
<td>After synthesis</td>
<td>Shot count based on synthesis netlist</td>
</tr>
<tr>
<td>After power routing</td>
<td>Shot count includes power routing</td>
</tr>
<tr>
<td>After placement</td>
<td>Shot count includes cell sizing, buffer insertion, and well taps</td>
</tr>
<tr>
<td>After clock tree synthesis</td>
<td>Shot count includes clock tree buffers and inverters</td>
</tr>
<tr>
<td>After detail routing</td>
<td>Most accurate shot count report. Includes routing and filler cells.</td>
</tr>
</tbody>
</table>
DRC and LVS

• Perform generic DRC and LVS steps
• Export final GDSII for tape-out
Summary

- DFEB flow and DFEB overlay library enable EbDW IC manufacturing
- DFEB design methodology includes few additional steps for shot count optimization and analysis
- Shot count analysis throughout the flow monitors shot count and design trade offs
- DFEB design methodology is largely the same as a generic cell-based design methodology
- DFEB designs are fully compatible and can be manufactured with optical lithography for volume production
Summary of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>Character Projection</td>
</tr>
<tr>
<td>DFEB</td>
<td>Design for E-Beam</td>
</tr>
<tr>
<td>EbDW</td>
<td>E-beam Direct Write</td>
</tr>
<tr>
<td>VSB</td>
<td>Variable Shape Beam</td>
</tr>
</tbody>
</table>