The Need for Speed: Computations for EUV Lithography
EUV lithography implemented at different node than originally conceived

Summary

EUVL is the only viable solution for 45 nm

- Integration of all EUVL modules demonstrated feasibility of the EUVL technology
- Mask costs are affordable – defect mitigation and repair methods demonstrated
- Suppliers are engaged to commercialize the technology
- Remaining technical challenges have been identified and are actively being addressed
- Commercialization emphasis is required

Minimum pitch = 160 nm
Horizontal-vertical bias due to oblique illumination

Biases in-between

- Ring-field optics have long been used in scanning lithography
 - Reduced aberrations

Exposure slit

Exposure field

~19°
Mask 3D effects were recognized early: Pitch dependence for focus

Pei-Yang Yan,
“Understanding Bossung Curve Asymmetry and Focus Shift Effect in EUV Lithography,”
BACUS Symposium on Photomask Technology, 2001

Fig. 2. Focus shift as a function of pitch for 30nm lines.
The light incident angle is 5-degree.
Pattern placement errors through focus

This is new: Overlay needs to be considered when employing process window-aware OPC!

Mask 3D effects drive need for complex illumination

CD versus focus for 2-bar structures, 32 nm pitch:

Image blurring due to mask 3D effects

Images from different source points are displaced laterally → extended sources result in blurred images

Jo Finders, 2017 EUVL Symposium
21 nm hp image blurring example

2 Looking at aerial image shift @BF
Shifts up to ±5nm

Cutline x

Cutline y
Need to maintain normalized image log-slope (NILS) to address LER

Quadrupole illumination

SMO standard solution

SMO NILS optimized

32-nm pitch lines/spaces

NILS = 1.61
LER = 3.6 nm

NILS = 1.57
LER = 3.7 nm

NILS = 2.05
LER = 2.6 nm

"Application of EUV resolution enhancement techniques (RET) to optimize and extend single exposure bi-directional patterning for 7nm and beyond logic designs"

Ryoung-Han Kim et. al.,
SPIE Advanced Lithography Symposium (2016)
Freeform illumination is now available for EUV lithography

Freeform pupil shapes

SMO pupil
for logic cut mask

rotated pupil shape
for DRAM brickwalls

y-asymmetric
3D mask compensation

all examples without light loss (100% illuminator efficiency) on Starlith® 3400 illumination system
Aberrations are significant for EUV lithography

Winfried Kaiser, Semicon Korea, 2018

0.2 nm = 15 m\(\lambda\)
Complex resist physics

Image log-slope
Resist-edge log-slope

- OPC models need to contend with pitch-dependent resist-blur

Adapted from S. Hansen, JM3
Sub-resolution assist features (SRAFs) for EUV lithography

Application of SRAFs significantly reduces range of focus shifts

Fig. 2. Focus shift as a function of pitch for 30nm lines. The light incident angle is 5-degree.

Pei-Yang Yan,
“Understanding Bossung Curve Asymmetry and Focus Shift Effect in EUV Lithography,”
BACUS Symposium on Photomask Technology, 2001
Application of SRAFs significantly reduces range of focus shifts

~40% reduction in best focus variation

Pei-Yang Yan,
“Understanding Bossung Curve Asymmetry and Focus Shift Effect in EUV Lithography,”
BACUS Symposium on Photomask Technology, 2001

Fig. 2. Focus shift as a function of pitch for 30nm lines. The light incident angle is 5-degree.
The future is curvilinear

"New methodologies for lower-K1 EUV OPC and RET optimization."
Many geometries in today’s chips creates big computational problem

• AMD’s Ryzen 7 microprocessor has 4.8B transistors
Ring-field EUV optics kills hierarchy – another computation complexity

Exposure slit

Exposure field

Reticle field

~19°
Flare also breaks hierarchy

OPC Development: flare compensation

- Based on optics PSD and mask pattern density calculations

Long-range density effects

![Graph showing PSD and PSF](image)

HJL Lithography
eBeam Initiative SPIE 2019
Current situation

- The physics of EUV lithography necessitates computations more complex than those encountered in optical lithography
 - Significant mask 3D effects
 - Multiple manifestations
 - Plane of best focus dependent on pitch and position within arrays
 - Image blur
 - Pattern placement shifts
 - Variations across the slit
 - Flare and aberrations
 - Complex resist behavior

- Support needed for curvilinear features

- Large chip sizes at the leading edge creates need for fast computational capabilities
Lithography simulations are amenable to parallel computations

P. De Bisschop, JM3, 2018
Lithography simulations are amenable to parallel computations

- Use of multiple servers with multiple-core processors are used routinely for optical lithography

- Example
 - 64 core microprocessors
 - 100 servers
 - 6400 cores

- OPC computations can still take 24 hours or more for optical lithography

- Inverse lithography calculations can take so long that they are often applied only to select patterns

- Greater computational capability will be needed for EUV lithography
Parallel computations: New paradigm with GPUs

Nvidia Volta GPU:
5120 cores
Curvilinear shapes: practical with multi-beam mask writing

Return to raster scanning

IMS MBMW-101

Patterns created with Nuflare MBM-1000
Summary

- Future OPC/RET for EUV lithography will necessarily be very complex
 - Mask 3D effects
 - Increases need for SRAFs
 - Resist physics

- Large chips manufactured with leading-edge lithography necessitate powerful computational and mask-making capabilities

- Fortunately, the infrastructure is becoming available to support solutions
 - GPU’s can provide a path to a much higher degree of parallel computing
 - EUV exposure tools now have freeform pupil shaping capabilities
 - Multiple-beam mask writers enable curvilinear patterns