Design For E-Beam Using Talus on a 65nm Test Chip

Shone K. Lee, Haruyuki Tago, Larry Chau, Tam Nguyen
D2S, Inc.
Subbayyan Venkatesan, Sultana Begum
Fastrack Design, Inc.

Santa Clara, CA | April 2, 2009
Copyright 2009 Magma Design Automation, Inc.
D₂S, Inc. and the eBeam Initiative

- Founded March, 2007
- Headquartered in San Jose, CA
- Dev. office in Shin-Yokohama, Japan
- Round A in 2007, led by Benchmark
- Completed Round B in March, 2009

- 10/08 : D₂S-Fujitsu/e-Shuttle collaboration
- 01/09 : D₂S-Vistec/ST/CEA/Leti collaboration
- 02/09 : eBeam Initiative launched with 20 companies including D₂S and Fastrack (www.ebeam.org)
Fastrack

• Fastrack Design is a *Premier Design Services* company.

• We strive to provide industry leading design solutions by staying in the bleeding edge technologies
 – First tapeout in 2002
 – Implementation flow exclusively based on Magma tool suite

• Our goal is to offer the best return on our customers’ investments by providing unparalleled ASIC design services
DFEB enables Maskless All-Layer SoC Prototypes

Design Data

DFEB library and Stencil Mask

E-beam Direct Write

Mask (Reticle)

Stepper

Wafers

OPC

Mask Manufacturing Test & Repair
CP shoots complex features in one shot

Electron Gun

1st Aperture

2nd Aperture

Demagnification

Variable Shape Beam (VSB)

Character Projection (CP)

(4 shots)

(1 shot)

Copyright 2009 Magma Design Automation, Inc.
DFEB Decreases Required Shot Count

- Makes EbDW practical for low volume prototypes
DFEB Designs Can Also Be Made with Mask

DFEB Library

D2S DFEB Methodology

Stencil

E-Beam Processing

Mask Data Prep.

Mask Mfg. Test & Repair

Mask

Photo Processing

RTL

Synthesis, Place & Route

Verification

GDSII

E-Beam direct write path

Conventional photo mask path

Copyright 2009 Magma Design Automation, Inc.
65-nm Test Chip

- Target for 65-nm low-power, 7-metal layers process
- Approximately 3+ Million gates
- Chip size is 4.2 X 8.4 mm²
- Voltages are 1.2V for core, and 3.3V for IO
- Clock frequencies are 166Mhz and 162Mhz
- Designed using DFEB library as much as possible
- Shot count reduction of 10X
Test Chip DFEB flow overview

D2S DFEB 65-nm Library

RTL.v

Synthesis

DFEB.gv

RTL D2S DFEB Shot Count Estimator

Post-Synthesis D2S DFEB Shot Count Estimator

D2S DFEB Methodology

DFEB Lib. Prep.

fix time

Floorplanning

fix cell

fix clock

fix wire

fix drc

TC.gv

TC.dspf

TC.gds

LEC

STA

DRC/LVS

Post-Layout D2S DFEB Shot Count Estimator

Talus

Copyright 2009 Magma Design Automation, Inc.
DFEB Methodology Considerations for Talus

• Implement using DFEB cells to maximize for shot count reduction
 – 158 DFEB overlay cells are built from existing standard cells library
 > Strongly prefers north/flip-south orientations
 – DFEB cells Include memory cells for maximizing memory macros shot count reduction
 > Memory macros strongly prefers north/south orientations

• Force “hide” the conventional standard cells initially, but re-introduce anytime in the flow to fix area, performance and power
 – DFEB and conventional standard cells orientations can be relaxed also

• Optimizing for shot count reduction with DFEB cannot compromise the quality of results
Talus with DFEB was very easy

• Default Talus flow scripts efficiently handled DFEB methodology

• No custom modifications were required, except for floorplanning and power planning
 – It is the same with any SoC design
Floorplan: Test Chip

Fixed footprint of 4.2 X 8.4 mm²

Use non-buffer blockage to:
1) Relieve congestions
2) Tighten utilization
 a) Reduced cell area
 b) Shorten wire lengths
 c) Easier timing closure
Power Planning: Meshes and Chip View

Power/Ground mesh are spaced between 400-500 tracks

Mesh view

Power/Ground rings are wider
Metal widths are integer multiple of 1um

Full chip power plan
Timing Validation

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Input Timing</th>
<th>Test Chip Achieved</th>
<th>% diff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>min</td>
</tr>
<tr>
<td>PLL Active</td>
<td>3340ps</td>
<td>5340ps</td>
<td>3340ps</td>
</tr>
<tr>
<td>PLL Bypass</td>
<td>3340ps</td>
<td>5340ps</td>
<td>3340ps</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Output Timing</th>
<th>Test Chip Achieved</th>
<th>% diff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>max</td>
<td>min</td>
</tr>
<tr>
<td>PLL Active</td>
<td>-470ps</td>
<td>-270ps</td>
<td>-494ps</td>
</tr>
<tr>
<td>PLL Bypass</td>
<td>-470ps</td>
<td>-270ps</td>
<td>-494ps</td>
</tr>
</tbody>
</table>

- In a single pass, Talus correlates very well with Third Party sign-off tools
Power and IR Drop Met Requirements

Total power: 422.8mW
Leakage: 27.1mW
Internal: 132.6mW
Swcap: 263.1mW

Data activity factor = 0.2
Clock activity factor = 0.5

Max. IR drop: ~29.4mV
VDD: 15.2mV
VSS: 14.2mV
@(2043.6um, 3367.88um)
DFEB Shot Count Estimation

- Shot count is added as an optimization criteria to area, performance, power, and yield
- D²S DFEB methodology optimize shot count through
 - co-design of the cells and the stencil mask characters
 - synthesis, place and route flow
- D²S DFEB Shot count estimation is available in every stage of the design
 - Similar to timing analysis, there is successive refinement of the estimate
- Cost of manufacturing with EbDW is directly related to shot count, even more than area
DFEB Test Chip Shot Count Estimation Report

<table>
<thead>
<tr>
<th>Post-Synthesis D2S DFEB Shot Count Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>VSB Shot Count</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Standard + Memories + IO + IP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Post-Layout D2S DFEB Shot Count Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>VSB Shot Count</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Standard + Memories + IO + IP</td>
</tr>
</tbody>
</table>

- Shot count estimation at Post-synthesis stage provide more conservative reduction ratio
- Shot count estimation at Post-Layout stage provide more refined estimate
- Estimation is based on metal 1, contact, poly and diffusion
Talus Met Our Expectation

- No customization scripts required
- Met our area, performance, and power goal
- Single pass timing correlated well with third party tools
- Reduced turnaround time compared with Blast Fusion
Conclusions

• DFEB with Talus is very easy
• Met our 10X shot count reduction goal
 – Without compromising area, performance and power
• Silicon validation is expected later in 2009
• DFEB enables maskless all layer SoC prototype
Q&A