ILT and Curvilinear Mask Designs for Advanced Memory Nodes

2/25/2020

Ezequiel Russell
Sr. Director of Mask Technology

©2019 Micron Technology, Inc. All rights reserved. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Statements regarding products, including statements regarding product features, availability, functionality, or compatibility, are provided for informational purposes only and do not modify the warranty, if any, applicable to any product. Drawings may not be to scale. Micron, the Micron logo, and all other Micron trademarks are the property of Micron Technology, Inc. All other trademarks are the property of their respective owners.
ILT and Curvilinear Masks use cases in Advanced Memory Nodes

- ILT use cases in memory designs
- Hot-Spot ILT correction and retargeting
- Why curvilinear masks, why now?
- DRAM Array Core ILT use case
- DRAM Contact layer full-chip curvilinear ILT
Memory Architectures: DRAM Designs

Different use cases of ILT in Memory Designs

Memory Element:
- Array core

Read / Write:
- Sense Amp
- Row Driver

Periphery Circuit:
- I/O
- Power
- Repair
ILT on Memory Devices
Different ILT use cases in Memory Designs

- **Repair Flow**
 - Applied on verification “hot spot” areas only

- **Memory Array Core**
 - Highly repetitive, can leverage hierarchy. Center of Core doesn’t change
 - Edge of Array Core changes based on surroundings → Correction needed

- **Array Read / Write**
 - Highly repetitive. Custom design (DTCO)
 - Dense layout, little space for SRAFs

- **Periphery Only**
 - Metal routing layers
 - Interconnect layers
 - Little repetition to leverage, large amount of SRAFs

- **Full-Chip**
 - Includes all of the above
Aggressive scaling and large topography in 3D NAND architecture, requires addition DoF budget in routing layers.

- **Green** “X” are pinching sites
- **Pink** “X” are bridging sites
- All weak spots are located near:
 - transition from vertical to horizontal
 - transition from vertical to 45-degree line
 - edge of dense line regions

ILT use cases in NAND Routing Layer: Hot-Spot Repair

Hybrid ILT and conventional OPC with blending

Limited PW – First to fail sites
Jog and Edge Progression ILT Optimization

CD increases by 140% on the weakest location at defocus and underdose condition.

Conventional OPC, No target Optimization

Target Optimization ILT correction
Straight Jogs converted to smooth transitions.

24 nm increase in CD
At defocus and underdose.
Jog and Edge Progression ILT Optimization

Depth of focus increases by 62% with jog and edge progression optimization.

Conventional OPC, No target Optimization

Target Optimization ILT correction

FEM-to-probe data from the fab corroborates the simulation results.

74 nm increase in DOF (~62% at 10% EL)
Why Curvilinear?

- Improved Process Window
 - Optimal AF placement
- Faster ILT
 - No Manhattanization step saves time
 - Up to 50% time reduction
- Consistency
 - Higher degree of consistency by skipping Manhattanization
Curvilinear Masks

VSB Single Beam Mask Writers
- Fracture step required to convert curvilinear shapes to polygons (VSB “shots”)
- Long write time and small shots $\xrightarrow{\text{high variability}}$ contribute to mask and wafer CD uniformity variation

Multi-beam Mask Writers
- Constant write time, independent of mask density and complexity
- Not limited by shot size, mask written as “pixels” (grey scale)
- Curvilinear masks show demonstrated higher degree of wafer CDU uniformity
Curvilinear Masks: DRAM Array Layer

- Curvilinear DRAM Array shapes produced visually more consistent shapes
- Wafer CD Uniformity shows a ~10% improvement for curvilinear mask

![Mask Data](image1)

![Mask SEM](image2)

![CD Variation](image3)

Wafer CD (through dose and mask bias)
Curvilinear Masks

Additional Benefits
- More accurate OPC models
 - No need to compensate for differences between “intended” shape and mask shape

Challenges
- EDA infrastructure not fully supporting curvilinear mask files
 - Efficient file format
 - Layout tools support
 - MRC compliance checks with curvilinear operators
- Database to Mask reticle inspection could be challenging
DRAM Array Core: Curvilinear ILT Correction

Improved NILS, CD Uniformity, and Contact Shape

Full-Chip ILT
- Application to a common DRAM array contact-like layer
 - CD uniformity and contact shape is critical

Mask Complexity
- Both Main features and assist features are curvilinear (small step Manhattanized) ILT

Memory Array Core

Assist Features (SRAFs)
DRAM Array Core: Full-Chip ILT

Improved pattern fidelity and NILS across PW conditions

Conventional OPC (hand-based)

Full-Chip ILT

Contacts lose their shape at off-nominal conditions

Straighter edge at off-nominal conditions

Improved CD Uniformity: Contacts stay round through process window
e: Full-Chip ILT
and NILS across PW conditions

Co-optimization of AFs and Main Feature are necessary to maximize CD Uniformity and Process Window → ILT

- Improved pattern fidelity and NILS across PW conditions
- Conventional OPC (hand-based)
 - Full-Chip ILT
 - ~35% improvement in PW

- Contacts stay round through process window at off-nominal conditions
- Edge Contacts lose their shape at off-nominal conditions
- Straighter edge at off-nominal conditions
Curvilinear ILT compared to regular OPC
- Process Window limiting sites show significant improvement with curvilinear ILT
Process Window Comparison: DRAM Contact

Curvilinear ILT vs. Standard OPC: First to fail site

~85% increase in DoF
Curvilinear Mask Pattern Fidelity – MBMW

Overlay of Mask Data and Mask SEM

- Pattern fidelity is not a concern, even with aggressive AFs
- In collaboration with NuFlare and D2S: written on MBM-1000
Curvilinear Mask Pattern Fidelity – MBMW

Overlay of Mask Data and Mask SEM

- Pattern fidelity is not a concern, even with aggressive AFs
- In collaboration with NuFlare and D2S: written on MBM-1000

Blue outline = Mask Data
Conclusions

Curvilinear ILT
- Offers a means to increase process window on critical layers in memory designs
- Enables the extension of immersion lithography and multi-patterning
- Helps improve wafer CD uniformity

Curvilinear Masks
- With the introduction of multi-beam mask writers, curvilinear masks are possible today
- Some challenges still exist in handling full-chip curvilinear data