

## **Frontiers in CD-SEM metrology**

#### aBeam Technologies, Inc.

Dr. Sergey Babin, sb@abeamtech.com

Hayward, CA, USA



#### **CD-SEM in semiconductor**

CD-SEM is an indispensable part of the semiconductor industry

- In volume manufacturing
- In R&D and process development
- New challenges for CD-SEM
  - Accuracy, in addition to repeatability
  - Robust contour and CD extraction from images of multiple layers
  - Overlay capability
  - 3D information about circuits









#### SEM metrology: accuracy problem



Typical repeatability is <0.1 nm

**Typical CD uncertainty is 3-4 nm** 



## Image brightness *≠* feature shape

An image is the result of complex physics, including properties of the e-beam, materials, 3D geometry, etc.



#### **CD-SEM: 22 nm. What does this mean?**

Wafer features are 3D

Vertical profile of a line

Where was 22 nm measured?

**CD-SEM: not known** 

This uncertainty is perfectly OK for high volume manufacturing!

What about design? Technology development? OPC calibration?

Accuracy!



# The next generation in SEM image analysis



## Summary of aBeam's development

#### **SEM** image analysis:

- Based on e-scattering model: improved accuracy
- A lot of automation: No recipe needed!
  - Finds contours and measures CDs without recipe
  - Superior contour extraction
  - Always know where the CD is measured: - top, bottom or middle
- Capability for side wall angles from top down images





#### Model based image analysis

Solves reverse task: where should the contours be to produce an input SEM image



**Electron scattering is simulated in real time; no libraries** 



#### **Electron scattering model**

myCD software uses an analytic model of electron scattering

Why analytic, not Monte Carlo?

- Monte Carlo takes too long
- Analytic model is fast, builds on the fly
- No need for libraries!





## Automation in image analysis

- **CD-SEM engineers spend a lot of time creating recipes** 
  - CD results depend on the recipe
  - Easy to adjust CDs, 2 5 nm or more
- Automation may exclude user's induced uncertainty
  - Also, greatly reduces the need for recipe creation
- A lot of automation in myCD:
  - Finds contours and measures CDs without recipes
  - No need for GDS to find contours
  - Often works on low quality images where other software fails





#### **Contour and CD measurement: auto**



**SEM** images

**Contours extracted** 

#### **Automation:**

- Finds contours
- Finds where to measure CDs
- Measures CDs

Model based, no recipe



#### Low current images for OPC

#### OPC requires low dose to reduce resist shrinkage







#### myCD works OK



## Verification of accuracy

Multiple verifications: 100% confirmed improved accuracy



Seagate: JVST B28 6 C6H1 2010



## Verification: top down vs TEM



- Threshold: variable error 4...16 nm, depends on feature size
- Model based software was accurate
- Side wall angle capability



## Metrology of double layers



Can CDs and SWA be measured from top down SEM images? If so, this means fast feedback and considerably lower cost!



#### Side wall angle, both layers

- CDs were measured for both layers, top and bottom, trench CD and pitch
- Side wall angles: the results are very repeatable: 0.4 degree (3-sigma)!



Also, at tomorrow's poster session; N.Rana will present SWA results for his structures; 0.15 degree repeatability



## **SEM simulation tools**

Indispensable part of SEM business



#### **SEM** simulations

- Equipment makers: optimize SEM design
- **Factories: optimize SEM parameters for specific layers**
- Monte Carlo simulator, CHARIOT
- Fast analytic simulator of SEM, aSEM

#### Both have pretty comprehensive models of SEM image formation



## Monte Carlo SEM modeling

#### Simulation of SEM images from first principles

#### **De-facto standard in semiconductor industry**



3D pattern



**Beam and Detector** 



e-scattering

## Simulated SEM images





**CHARIOT key features:** 

- Low voltage electrons
- Charging



#### Examples, Monte Carlo

DI

**CD-SEM** 



#### **Resist line with charging**



## High aspect ratio 32 nm contact hole with pre-charge



**Electron trajectories with charging** 



## Analytic SEM: fast simulator

#### **Comprehensive model:**

#### • includes electron scattering, charging, e-field, detectors



More at the exhibition and today's poster session



#### Summary: next gen SEM image analysis

- Automation greatly reduces human factors in results
  - Finds contours and CDs without recipes and without GDS
  - Often works on low quality images where other software fails
- Using the model, the CD accuracy was greatly improved



Capability for side wall angle from top down images



## Thank you for your attention!



